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Since both acceleration and compression are required for an Inertial Fusion Driver, the

understanding of their effect on the beam quality, emittance, is important.  This report

attempts to generalize the usual emittance formula1,2 for the drifting beam to include these

effects.  The derivation of the 2-D emittance equation is carried out and a comparison with

the particle code results is given.  The 2-D emittance at a given axial location is reasonable

to consider for a long beam, particularly with velocity tilt; transverse emittance averaged

over the entire bunch is not a useful quantity.

1. Derivation of the emittance equation.

The coordinates system used is (t,x,y) rather than the usual (s,x,y), since the transverse

momentum is invariant under longitudinal acceleration.  The following moment equations

can be derived from the Vlasov equation:
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τ = N / dN
dt

N = ∫ n dxdy

where τ is the inverse of the axial compression rate and N is the line number density.  Also,

kx is the focusing strength of the quadruple in x-direction and m is the rest mass.
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The definition of normalized emittance and  its time derivative are given as follows:
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After dividing by <x2> and adding the corresponding y equation, it becomes:

1
<x2>

 
d
dt ε

2
x + 

1
<y2>

 
d
dt ε

2
y =  

2e

γ2m2
 [ <p⋅E> - I ] (3)

where I = 
<xpx>
<x2>

 <xEx> +  
<ypy>
<y2>

 <yEy>.

The <p⋅E> term is the work done on the particles and it can be rewritten as:
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where E= - ϕ and the continuity equation has been used.  W is the electrostatic energy per

unit length and 
2W

τ
 is the convective energy flow due to axial compression.

The second term on the right hand side of the emittance equation is also expressed as:
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where Wu = W0 [1+ 4 ln 
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4 .

Here Rc is the radius of the outside conductor and Rc is assumed to be large enough to

ignore detailed shape of the boundary.  Also, Wu is the electrostatic energy per unit length

for the uniform density profile beam with the same <x2> and <y2>.   The relation is strictly



true only for a charge distribution with elliptic symmetry, i.e., n = n (
x2

a2  + 
y2

b2) at all time;3

however numerical simulations show it is not a strong requirement.2

Equation (3) becomes:
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where Q = 
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If we assume ε2
x = ε2

y = ε2
n, it can be simplified further to the following form.*
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where <r2> = <x2 + y2> and e  =  
<x2> - <y2>

<r2>
  which becomes zero for a circular cross

section.  This can be trivially recast in terms of s. (Also it can be derived directly using an

(s,x,y) coordinate system.)
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The rate of normalized emittance change is proportional to the rate of change of the

normalized non-linear electrostatic energy, as for the drifting beam.  The proportionality

multiplier depends mainly on N and <r2>, neglecting small changes of γ and e.  For a

matched beam, e2< 10% and will be neglected hereafter.

2. Applications

* The effect of small differences of emittance in x and y due to the FODO lattice structure
becomes negligible, when the time average over a lattice period is taken.



Since the typical time scale for electrostatic energy changes is the plasma frequency, on the

order of (
σ0vz

L ), in contrast to the relatively slow rate of change of Q<r2> for the

adiabatically evolving beam, the right hand side can be approximated by the total derivative

yielding a simple estimation formula for the final emittance.  However, care is necessary

for the case of slow driven electrostatic energy changes, as discussed later.

For the space charge dominated drifting beam with matched envelope, the emittance

formula gives the following estimation as in the reference 1,
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where the final state is assumed to be of uniform density, which is the equilibrium energy

state in the limit of infinite tune depression.  The difference in the change of ε for the

accelerating beam is minor, slightly less for the same σ0, since <r2> becomes smaller for a

gentle acceleration.

The axial compression will enhance the change of the emittance by increasing N, the final

emittance will be somewhat higher than the drifting beam.(By a factor of  ~ [1+ 
2L

σ0vzτ
 ]).

As the beam is axially expanding, as in the head and tail end of the bunch, the radius of the

beam decreases and the temperature rises resulting in less tune depression.  At the same

time the Debye length increases and the beam profile becomes more centrally peaked.  Thus

the normalized electrostatic energy increases and the emittance decreases.  In the limit of

extreme decompression from the uniform density distribution, simple estimation of final

emittance can be made as follows:
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where the small time derivative of <r2> is ignored and Q is assumed to decrease linearly in

time.  The final radius has been determined by the initial emittance.  This small emittance

decrease at the head and tail of the beam has been observed in MBE-4 experiments.4



3. Comparison with particle code simulation

The 2-D PIC code SHIFTXY has been modified to accommodate acceleration and

compression.5  Acceleration is added by δ function kicks in the middle of the drift section

and linear increase of energy with distance is assumed.  Linear compression or

decompression in distance is also assumed.  Hollow initial density distribution of  n ~ ρ2

for accelerated or compressed beam is assumed, where ρ2 = (
x2

a2  + 
y2

b2) and a and b are the

major and minor radii of the beam.  An initial Gaussian velocity distribution is used.

Figure 1 shows the time history of the unnormalized emittance for the case where the initial

velocity has been doubled and N quadrupled through the 30 down stream lattice periods.

Also shown is ε of the drifting beam.  The emittance increases and oscillates rapidly for the

first undepressed betatron period and settles down to a more quiet state with residual

oscillations.6  The difference of final normalized emittance of the two is rather small due to

weak compression during the period of rapid emittance change.  The final emittance of the

various cases are summarized in Table 1.

The effect of the axial expansion on ε is shown in Figure 2.  Q is decreased linearly to 0.16

times the initial value.  Initial tune depression (
σ
σ0

) is 0.2.  The final emittance shows 6.0 %

decrease compared with analytic estimation of 6.6 % using equation (10) with assumed

final Gaussian density distribution.

4. Conclusion

The derived emittance equation which includes the effects of acceleration and compression

shows good agreement with particle simulation and it supersedes the previous emittance

formula for the drifting beam.
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Table 1.  Summary of the particle code simulation.  The numbers in the brackets are the
analytic estimations.  The initial σ0 is 60o.

[
σ
σ0

]i
Nf
Ni

vf
vi

εf

εi
Lattice periods

0.2 1 1 1.22(1.21) 30
0.2 1 2 1.20 30
0.2 4 2 1.28(1.26) 30
0.1 1 1 1.84(1.69) 15
0.1 1 2 1.70 15
0.1 4 2 1.90(2.00) 15
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Figure 1. Time history of emittance.
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Figure 2. Evolution of xrms, εy and uniformity.  The uniformity is defined by

<δx4>

2<δx2>2
 which is unity for a uniform density distribution, and greater or less

than unity for peaked and hollow beams, respectively.


